RNA interference has tremendous potential for cancer therapy but is limited by the insufficient potency of RNAi molecules after i.v. administration. We previously found that complexation with PLL(30)-PEG(5K) greatly increases the potency of 3'-cholesterol-modified siRNA [Chol-siRNA] in primary murine syngeneic 4T1 breast tumors after i.v. administration but mRNA suppression decreases 24 h after the final dose. We hypothesized that complexation of cholesterol-modified Dicer-substrate siRNA (Chol-DsiRNA) in place of Chol-siRNA can increase the potency and duration of suppression by polyplexes of PLL(30)-PEG(5K) in solid tumors. We found that replacing Chol-siRNA with Chol-DsiRNA increased polyplex loading and nuclease protection, suppressed stably expressed luciferase to the same extent in primary murine 4T1-Luc breast tumors under the current dosage regimen, but maintained suppression ~72 h after the final dose. The kinetics of suppression in 4T1-Luc over 72 h, however, were similar between DsiLuc and siLuc after electroporation and between polyplexes of Chol-DsiLuc and Chol-siLuc after transfection, suggesting that Chol-DsiRNA polyplexes increase the duration of mRNA suppression through differences in polyplex activities in vivo. Thus, replacing Chol-siRNA with Chol-DsiRNA may significantly increase the duration of mRNA suppression by polyplexes of PLL(30)-PEG(5K) and possibly other PEGylated polycationic polymers in primary tumors and metastases after i.v. administration.
Keywords: Chol-DsiRNA polymer micelles; Chol-DsiRNA polyplexes; Chol-siRNA polymer micelles; Chol-siRNA polyplexes; Drug delivery; DsiRNA; RNA interference.
Copyright © 2018 Elsevier B.V. All rights reserved.