In this study, we developed a high-throughput antifungal activity screening method using a cheese-mimicking matrix distributed in 24-well plates. This method allowed rapid screening of a large variety of antifungal agent candidates: bacterial fermented ingredients, bacterial isolates, and preservatives. Using the proposed method, we characterized the antifungal activity of 44 lactic acid bacteria (LAB) fermented milk-based ingredients and 23 LAB isolates used as protective cultures against 4 fungal targets (Mucor racemosus, Penicillium commune, Galactomyces geotrichum, and Yarrowia lipolytica). We also used this method to determine the minimum inhibitory concentration of a preservative, natamycin, against 9 fungal targets. The results underlined the strain-dependency of LAB antifungal activity, the strong effect of fermentation substrate on this activity, and the effect of the screening medium on natamycin minimum inhibitory concentration. Our method could achieved a screening rate of 1,600 assays per week and can be implemented to evaluate antifungal activity of microorganisms, fermentation products, or purified compounds compatible with dairy technology.
Keywords: antifungal activity; cheese model; high-throughput screening.
Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.