Streptococcus pneumoniae is a major cause of invasive pneumococcal disease, septicemia, and meningitis that can result in high morbidity rates in children under 5 years old. The current polysaccharide-based vaccines can provide type-specific immunity, but a broad-spectrum vaccine would provide greater coverage. Therefore, developing pneumococcal-protein-based vaccines that can extend to more serum types is highly important. In this study, we vaccinated mice via the subcutaneous (s.c.) route with a systemic vaccine that is a mixture of fusion protein PsaA-PspA23 and a single protein, PspA4, with aluminum hydroxide as an adjuvant. As a comparison, mice were immunized intranasally with a mucosal vaccine that is a mixture of PspA2-PA-BLP (where PA is protein anchor and BLP is bacterium-like particle) and PspA4-PA-BLP, via the intranasal (i.n.) route. The two immunization processes were followed by challenge with Streptococcus pneumoniae bacteria from two different PspA families. Specific IgG titers in the serum and specific IgA titers in the mucosa were determined following immunizations. Bacterial loads and survival rates after challenge were compared. Both the systemic vaccine and the mucosal vaccine induced a significant increase of IgG against PspAs. Only the mucosal vaccine also induced specific IgA in the mucosa. The two vaccines provided protection, but each vaccine showed an advantage. The systemic vaccine induced higher levels of serum antibodies, whereas the mucosal vaccine limited the bacterial load in the lung and blood. Therefore, coimmunizations with the two types of vaccines may be implemented in the future.
Keywords: PsaA; PspA; Streptococcus pneumoniae; bacterium-like particles (BLPs); pneumococcal protein vaccine.
Copyright © 2018 American Society for Microbiology.