Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

Nanotechnology. 2018 Jun 15;29(24):245704. doi: 10.1088/1361-6528/aabb45. Epub 2018 Apr 3.

Abstract

Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si-NiPc-Cu2Si junction is about three orders higher than that through graphene-NiPc-graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si-NiPc-Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.