The surface composite and morphology of binary metal sulfides are the key for efficient overall water splitting. However, tuning the morphology and surface composition of binary metal sulfides in a facile way is still a challenge. Herein, binary Fe-Ni sulfides supported on nickel foam (FeNi-S/NF) with different morphology and composition ratio of Fe/Ni have been synthesized through a facile one-step electrodeposition assisted by liquidcrystaltemplate (LCT). The binary FeNi-S has improved activity and conductivity compared to single metal sulfides. LCT-assisted porous FeNi-S film composed of uniform nanospheres is obviously different from planar film electrodeposited in water solution. LCT-assisted FeNi-S nanospheres are covered by many interwoven nanosheets, implying more exposed active sites for water splitting. Furthermore, the different Fe/Ni ratios of FeNi-S/NF samples have been systematically studied to explore the influence of Fe-incorporation on intrinsic activity of FeNi-S/NF. And the sample with Fe/Ni ratio (3/1) demonstrates the best activity and excellent stability for overall water electrolysis. Therefore, our work provides a facile and controllable access to binary metal sulfides with excellent performances for overall water splitting.
Keywords: Binary FeNi-S; Electrodeposition; Liquid crystal template; Nickel foam; Overall water splitting.
Copyright © 2018 Elsevier Inc. All rights reserved.