Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia

J Hypertens. 2018 Jun;36(6):1342-1350. doi: 10.1097/HJH.0000000000001712.

Abstract

Objective: Blood pressure elevation in response to transient renal nerve stimulation (RNS) has been used to determine the ablation target and endpoint of renal denervation. This study aimed to evaluate the safety of transient RNS in canines with normal or ischaemic hearts.

Methods: In ten normal (Group 1) and six healed myocardial infarction (HMI) (Group 2) canines, a large-tip catheter was inserted into the left or right renal artery to perform transient RNS. The left stellate ganglion neural activity (LSGNA) and ventricular electrophysiological parameters were measured at baseline and during transient RNS. In another 20 acute myocardial infarction (AMI) canines, RNS (Group 3, n = 10) or sham RNS (Group 4, n = 10) was intermittently (1 min ON and 4 min OFF) performed for 1 h following AMI induction. The LSGNA and AMI-induced ventricular arrhythmias were analysed.

Results: In normal and HMI canines, although transient RNS significantly increased the LSGNA and facilitated the action potential duration (APD) alternans, it did not induce any ventricular arrhythmias and did not change the ventricular effective refractory period, APD or maximum slope of the APD restitution curve. In AMI canines, transient RNS significantly exacerbated LSG activation and promoted the incidence of ventricular arrhythmias.

Conclusion: Transient RNS did not increase the risk of ventricular arrhythmias in normal or HMI hearts, but it significantly promoted the occurrence of ventricular arrhythmias in AMI hearts. Therefore, electrical stimulation-based renal nerve mapping may be unsafe in AMI patients and in patients with a high risk for malignant ventricular arrhythmias.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Arrhythmias, Cardiac / physiopathology*
  • Dogs
  • Electric Stimulation / adverse effects*
  • Heart Ventricles / physiopathology
  • Kidney / innervation*
  • Myocardial Infarction / physiopathology*
  • Myocardial Ischemia / physiopathology*
  • Stellate Ganglion / physiopathology