Reduction of Muscle Contractions during Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model

J Vasc Interv Radiol. 2018 Jun;29(6):893-898.e4. doi: 10.1016/j.jvir.2017.12.019. Epub 2018 Apr 6.

Abstract

Purpose: To compare the intensity of muscle contractions in irreversible electroporation (IRE) treatments when traditional IRE and high-frequency IRE (H-FIRE) waveforms are used in combination with a single applicator and distal grounding pad (A+GP) configuration.

Materials and methods: An ex vivo in situ porcine model was used to compare muscle contractions induced by traditional monopolar IRE waveforms vs high-frequency bipolar IRE waveforms. Pulses with voltages between 200 and 5,000 V were investigated, and muscle contractions were recorded by using accelerometers placed on or near the applicators.

Results: H-FIRE waveforms reduced the intensity of muscle contractions in comparison with traditional monopolar IRE pulses. A high-energy burst of 2-μs alternating-polarity pulses energized for 200 μs at 4,500 V produced less intense muscle contractions than traditional IRE pulses, which were 25-100 μs in duration at 3,000 V.

Conclusions: H-FIRE appears to be an effective technique to mitigate the muscle contractions associated with traditional IRE pulses. This may enable the use of voltages greater than 3,000 V necessary for the creation of large ablations in vivo.

MeSH terms

  • Animals
  • Electroporation / methods*
  • Female
  • In Vitro Techniques
  • Liver / pathology*
  • Models, Animal
  • Muscle Contraction / physiology*
  • Swine