Background: The fundamental mechanism underlying emotional processing in major depressive disorder (MDD) remains unclear. To better understand the neural correlates of emotional processing in MDD, we investigated the role of multiple functional networks (FNs) during emotional stimuli processing.
Methods: Thirty-two medication-naïve subjects with MDD and 36 healthy controls (HCs) underwent an emotional faces fMRI task that included neutral, happy and fearful expressions. Spatial independent component analysis (sICA) and general linear model (GLM) were conducted to examine the main effect of task condition and group, and two-way interactions of group and task conditions.
Results: In sICA analysis, MDD patients and HCs together showed significant differences in task-related modulations in five FNs across task conditions. One FN mainly involving the ventral medial prefrontal cortex showed lower activation during fearful relative to happy condition. Two FNs mainly involving the bilateral inferior frontal gyrus and temporal cortex, showed opposing modulation relative to the ventral medial prefrontal cortex FN, i.e., greater activation during fearful relative to happy condition. Two remaining FNs involving the fronto-parietal and occipital cortices, showed reduced activation during both fearful and happy conditions relative to the neutral condition. However, MDD and HCs did not show significant differences in expression-related modulations in any FNs in this sample.
Conclusions: SICA revealed differing functional activation patterns than typical GLM-based analyses. The sICA findings demonstrated unique FNs involved in processing happy and fearful facial expressions. Potential differences between MDD and HCs in expression-related FN modulation should be investigated further.