Paclitaxel (PTX) is a microtubule inhibitor administered as an albumin-bound nanoformulation for the treatment of breast cancer. However, the effectiveness of PTX is limited by resistance mechanisms mediated in part by upregulation of the anti-apoptotic BCL-2 and P-glycoprotein (P-gp). Present investigation was designed to study the synergistic potential of NuBCP-9 and PTX loaded polymeric nanoparticles to minimize the dose and improve the efficacy and safety. PTX and NuBCP-9 loaded polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol [PLA-(PEG-PPG-PEG)] nanoparticles were prepared by double emulsion solvent evaporation method. PTX and NuBCP-9 loaded NPs displayed an average size of 90 nm with spherical morphology. PTX and NuBCP-9 dual loaded NPs reducedIC50 by ~40-fold and acted synergistically. Treatment of the syngeneic EAT mice with PTX-NuBCP-9/NPs resulted in improved efficacy than that alone treated mice. Overall, the concomitant delivery PTX and NuBCP-9 loaded NPs showed superior activity than that of PTX and NuBCP-9 alone treated mice.
Keywords: BCL-2; NuBCP-9; Paclitaxel; nab-paclitaxel; polymeric nanoparticles.
Copyright © 2018 Elsevier Inc. All rights reserved.