Cirrhosis is a disease which may develop as a consequence of various conditions. In advanced liver disease, blood coagulation can be seriously affected. Portal hypertension, vascular abnormalities and/or a dysbalance in coagulation factors may result in bleeding disorders or in the development of thrombosis. Fibrinogen is the main protein involved in clot formation and wound healing. The aim of this work was to analyse the glycosylation pattern of the isolated fibrinogen molecules by lectin-based protein microarray, together with the carbonylation pattern of the individual fibrinogen chains, possible changes in the molecular secondary and tertiary structure and reactivity with the insulin-like growth factor-binding protein 1 (IGFBP-1) in patients with cirrhosis. The results pointed to an increase in several carbohydrate moieties: tri/tetra-antennary structures, Gal β-1,4 GlcNAc, terminal α-2,3 Sia and α-1,3 Man, and a decrease in core α-1,6 Fuc and bi-antennary galactosylated N-glycans with bisecting GlcNAc. Fibrinogen Aα chain was the most susceptible to carbonylation, followed by the Bβ chain. Cirrhosis induced additional protein carbonylation, mostly on the α chain. Spectrofluorimetry and CD spectrometry detected reduction in the α-helix content, protein unfolding and/or appearance of modified amino acid residues in cirrhosis. The amount of complexes which fibrinogen forms with IGFBP-1, another factor involved in wound healing was significantly greater in patients with cirrhosis than in healthy individuals. A more detailed knowledge of individual molecules in coagulation process may contribute to deeper understanding of coagulopathies and the results of this study offer additional information on the possible mechanisms involved in impaired coagulation due to cirrhosis.
Keywords: Carbonylation; Fibrinogen; Glycosylation; Protein interaction; Protein structure.
Copyright © 2018 Elsevier Ltd. All rights reserved.