Despite implications of persistence of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in the development of hepatocellular carcinoma (HCC), little is known about serum cccDNA in HBV-infected diseases. We developed a cccDNA-selective droplet digital PCR (ddPCR) to assess cccDNA content and dynamics across different stages of HCC development. One hundred forty-seven serum samples and 35 formalin-fixed, paraffin-embedded tumor tissues were derived from patients with HCC or HBV hepatitis/cirrhosis. After specific amplification and selective digestion, probe-based ddPCR was used to quantify cccDNA copy numbers in single cells and clinical samples. The cccDNA in single HepG2.2.15 cells ranged from 0 to 10.8 copies/cell. Compared with non-HCC patients, HCC patients showed a higher cccDNA-positive rate (89.9% versus 53.2%; P = 4.22 × 10-6) and increased serum cccDNA contents (P = 0.002 and P = 0.041 for hepatitis and cirrhosis patients, respectively). Serum cccDNA ranged from 84 to 1.07 × 105 copies/mL. Quantification of serum cccDNA and HBV-DNA was an effective way to discriminate HCC patients from non-HCC patients, with areas under the curve of receiver operating characteristic of 0.847 (95% CI, 0.759-0.935; sensitivity, 74.5%; specificity, 93.7%). cccDNA-selective ddPCR is sensitive to detect cccDNA in single cells and different clinical samples. Combined analysis of serum cccDNA and HBV-DNA may be a promising strategy for HBV-induced HCC surveillance and antiviral therapy evaluation.
Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.