2D Porous TiO2 Single-Crystalline Nanostructure Demonstrating High Photo-Electrochemical Water Splitting Performance

Adv Mater. 2018 May;30(21):e1705666. doi: 10.1002/adma.201705666. Epub 2018 Apr 16.

Abstract

Porous single crystals are promising candidates for solar fuel production owing to their long range charge diffusion length, structural coherence, and sufficient reactive sites. Here, a simple template-free method of growing a selectively branched, 2D anatase TiO2 porous single crystalline nanostructure (PSN) on fluorine-doped tin oxide substrate is demonstrated. An innovative ion exchange-induced pore-forming process is designed to successfully create high porosity in the single-crystalline nanostructure with retention of excellent charge mobility and no detriment to crystal structure. PSN TiO2 film delivers a photocurrent of 1.02 mA cm-2 at a very low potential of 0.4 V versus reversible hydrogen electrode (RHE) for photo-electrochemical water splitting, closing to the theoretical value of TiO2 (1.12 mA cm-2 ). Moreover, the current-potential curve featuring a small potential window from 0.1 to 0.4 V versus RHE under one-sun illumination has a near-ideal shape predicted by the Gartner Model, revealing that the charge separation and surface reaction on the PSN TiO2 photoanode are very efficient. The photo-electrochemical water splitting performance of the films indicates that the ion exchange-assisted synthesis strategy is effective in creating large surface area and single-crystalline porous photoelectrodes for efficient solar energy conversion.

Keywords: 2D; ion-exchange; pore-forming; porous single-crystalline TiO2 films; water splitting.