Background: The mechanisms of action of volatile anaesthetics are unclear. Volatile anaesthetics selectively inhibit complex I in the mitochondrial respiratory chain. Mice in which the mitochondrial complex I subunit NDUFS4 is knocked out [Ndufs4(KO)] either globally or in glutamatergic neurons are hypersensitive to volatile anaesthetics. The volatile anaesthetic isoflurane selectively decreases the frequency of spontaneous excitatory events in hippocampal slices from Ndufs4(KO) mice.
Methods: Complex I inhibition by isoflurane was assessed with a Clark electrode. Synaptic function was measured by stimulating Schaffer collateral fibres and recording field potentials in the hippocampus CA1 region.
Results: Isoflurane specifically inhibits complex I dependent respiration at lower concentrations in mitochondria from Ndufs4(KO) than from wild-type mice. In hippocampal slices, after high frequency stimulation to increase energetic demand, short-term synaptic potentiation is less in KO compared with wild-type mice. After high frequency stimulation, both Ndufs4(KO) and wild-type hippocampal slices exhibit striking synaptic depression in isoflurane at twice the 50% effective concentrations (EC50). The pattern of synaptic depression by isoflurane indicates a failure in synaptic vesicle recycling. Application of a selective A1 adenosine receptor antagonist partially eliminates isoflurane-induced short-term depression in both wild-type and Ndufs4(KO) slices, implicating an additional mitochondria-dependent effect on exocytosis. When mitochondria are the sole energy source, isoflurane completely eliminates synaptic output in both mutant and wild-type mice at twice the (EC50) for anaesthesia.
Conclusions: Volatile anaesthetics directly inhibit mitochondrial complex I as a primary target, limiting synaptic ATP production, and excitatory vesicle endocytosis and exocytosis.
Keywords: adenosine; anaesthesia; hypersensitivity.
Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.