Relationship Between Quantitative MRI Biomarkers and Patient-Reported Outcome Measures After Cartilage Repair Surgery: A Systematic Review

Orthop J Sports Med. 2018 Apr 10;6(4):2325967118765448. doi: 10.1177/2325967118765448. eCollection 2018 Apr.

Abstract

Background: Treatment of articular cartilage injuries remains a clinical challenge, and the optimal tools to monitor and predict clinical outcomes are unclear. Quantitative magnetic resonance imaging (qMRI) allows for a noninvasive biochemical evaluation of cartilage and may offer advantages in monitoring outcomes after cartilage repair surgery.

Hypothesis: qMRI sequences will correlate with early pain and functional measures.

Study design: Systematic review; Level of evidence, 3.

Methods: A PubMed search was performed with the following search terms: knee AND (cartilage repair OR cartilage restoration OR cartilage surgery) AND (delayed gadolinium-enhanced MRI OR t1-rho OR T2 mapping OR dgemric OR sodium imaging OR quantitative imaging). Studies were included if correlation data were included on quantitative imaging results and patient outcome scores.

Results: Fourteen articles were included in the analysis. Eight studies showed a significant relationship between quantitative cartilage imaging and patient outcome scores, while 6 showed no relationship. T2 mapping was examined in 11 studies, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in 4 studies, sodium imaging in 2 studies, glycosaminoglycan chemical exchange saturation transfer (gagCEST) in 1 study, and diffusion-weighted imaging in 1 study. Five studies on T2 mapping showed a correlation between T2 relaxation times and clinical outcome scores. Two dGEMRIC studies found a correlation between T1 relaxation times and clinical outcome scores.

Conclusion: Multiple studies on T2 mapping, dGEMRIC, and diffusion-weighted imaging showed significant correlations with patient-reported outcome measures after cartilage repair surgery, although other studies showed no significant relationship. qMRI sequences may offer a noninvasive method to monitor cartilage repair tissue in a clinically meaningful way, but further refinements in imaging protocols and clinical interpretation are necessary to improve utility.

Keywords: T2 mapping; cartilage repair surgery; dGEMRIC; quantitative magnetic resonance imaging.

Publication types

  • Review