Post-translational modifications (PTMs) of histones are important epigenetic regulatory mechanisms that are often dysregulated in cancer. We employ middle-down proteomics to investigate the PTMs and proteoforms of histone H4 during cell cycle progression. We use pH gradient weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) for on-line liquid chromatography-mass spectrometry analysis to separate and analyze the proteoforms of histone H4. This procedure provides enhanced separation of proteoforms, including positional isomers, and simplifies downstream data analysis. We use ultrahigh mass accuracy and resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to unambiguously distinguish between acetylation and tri-methylation (∆m = 0.036 Da). In total, we identify and quantify 233 proteoforms of histone H4 in two breast cancer cell lines. We observe significant increases in S1 phosphorylation during mitosis, implicating an important role in mitotic chromatin condensation. A decrease of K20 unmodified proteoforms is observed as the cell cycle progresses, corresponding to an increase of K20 mono- and di-methylation. Acetylation at K5, K8, K12, and K16 declines as cells traverse from S phase to mitosis, suggesting cell cycle-dependence and an important role during chromatin replication and condensation. These new insights into the epigenetics of the cell cycle may provide new diagnostic and prognostic biomarkers.
Keywords: ETD; FT-ICR; PTM; WCX-HILIC; epigenetics; mass spectrometry.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.