Messenger RNA (mRNA) is a biomolecule with a wide range of promising clinical applications. However, the unstable nature of mRNA and its susceptibility to degradation by ribonucleases (RNases) necessitate the use of specialized formulations for delivery. Polycations are an emerging class of synthetic carriers capable of packaging nucleic acids, and may serve as suitable RNase-resistant formulations for mRNA administration. Here, we explore the application of VIPER and sunflower polycations, two polycations previously synthesized by our group, for the delivery of mRNA in comparison to branched poly(ethylenimine); all three polycations have been shown to efficiently deliver plasmid DNA (pDNA) to cultured cells. Despite successful mRNA condensation and packaging, transfection studies reveal that these three polycations can only efficiently deliver mRNA under serum-free conditions, while pDNA delivery is achieved even in the presence of serum. RNase resistance studies confirm that nuclease degradation of mRNA cargo remains a significant barrier to mRNA delivery using these polycations. These results emphasize the need for additional strategies for nuclease protection of mRNA cargo beyond electrostatic complexation with polycation.
Keywords: cationic polymers; gene delivery; mRNA delivery; nuclease resistance.