Development of nitrate tolerance is a major drawback to nitrate therapy. Prostacyclin (PGI2) is a powerful vasodilator produced from prostaglandin (PGH2) by prostacyclin synthase (PGIS) in endothelial cells. This study aimed to determine the role of PGIS S-nitrosylation in nitrate tolerance induced by nitroglycerin (GTN). In endothelial cells, GTN increased PGIS S-nitrosylation and disturbed PGH2 metabolism, which were normalized by mutants of PGIS cysteine 231/441 to alanine (C231/441A). Clearance of nitric oxide by carboxy-PTIO or inhibition of S-nitrosylation by N-acetyl-cysteine decreased GTN-induced PGIS S-nitrosylation. Enforced expression of mutated PGIS with C231/441A markedly abolished GTN-induced PGIS S-nitrosylation and nitrate cross-tolerance in Apoe-/- mice. Inhibition of cyclooxygenase 1 by aspirin, supplementation of PGI2 by beraprost, and inhibition of PGIS S-nitrosylation by N-acetyl-cysteine improved GTN-induced nitrate cross-tolerance in rats. In patients, increased PGIS S-nitrosylation was associated with nitrate tolerance. In conclusion, GTN induces nitrate cross-tolerance through PGIS S-nitrosylation at cysteine 231/441.
© 2018 American Society for Clinical Pharmacology and Therapeutics.