Recently, nanotechnology has received great attention in war against cancer. The present study investigated the antitumor efficacy of molecularly imprinted nanopreparation of 5-fluorouracil (nano-5-FU) against Ehrlich ascites carcinoma (EAC) solid tumors grown in mice. Tumor cells were transplanted into female albino mice. Mice were allocated into 5 groups; Group 1: control EAC bearing mice. Groups 2&3: EAC-bearing mice treated orally with 5-FU (5 and 10 mg/kg) twice weekly. Groups 4&5: EAC bearing mice treated with nano-5-FU (5 and 10 mg/kg) twice weekly. Treatment with nano-5-FU showed higher antitumor effect compared to free 5-FU as indicated by enhanced apoptosis and reduction in tumor weight. Additionally, lower number of mitotic figures and greater area for necrosis were observed in the tumor specimens alongside with a decline in the number of intratumoral proliferating nuclei in comparison to free 5-FU. Furthermore, the results showed a significant down-regulation in tumoral expression of caspase-3 and vascular endothelial growth factor. Together, these results further support the potential of using nanotechnology to enhance anticancer efficacy of 5-FU.
Keywords: 5-Flourouracil; Ehrlich's solid tumor; Molecularly-imprinted nanopreparation; Mouse; Precipitation polymerization.
Copyright © 2018 Elsevier B.V. All rights reserved.