More and more evidence has demonstrated that Chromobox protein homolog 3(CBX3) has an important role in carcinogenesis by regulating several mechanisms, such as heterochromatin formation, gene silencing, DNA replication and repair. However, its role in pancreatic cancer has seldom been discussed. In the present study, we silenced CBX3 expression in pancreatic cancer cell lines and identified the positive roles of CBX3 in cancer cell proliferation. Furthermore, we demonstrated that silencing CBX3 in pancreatic cancer cells inhibited aerobic glycolysis, the basis for providing cancer cells with building blocks for macromolecule synthesis and ATP that required. To search for the underlying molecular mechanism, we turned to examine the impact of CBX3 on the expression of FBP1, a negative regulator of aerobic glycolysis in pancreatic cancer and indicated that CBX3 negatively regulated FBP1 expression. Silencing FBP1 expression attenuated the decrease in glycolytic capacity that caused by CBX3 knockdown in pancreatic cancer cells. Taken together, these data reveal that CBX3 serves as a positive regulator of aerobic glycolysis via suppressing of the FBP1 in pancreatic cancer cells. Disrupting the CBX3-FBP1 signaling axis would be effective to treat pancreatic cancer and prevent aerobic glycolysis.
Keywords: Aerobic glycolysis; CBX3; FBP1; Pancreatic cancer.
Copyright © 2018 Elsevier Inc. All rights reserved.