We propose protein localization dependent signal activation (PLDSA) as a model to describe pre-existing protein partitioning between the cytosol, and membrane surface, as a means to modulate signal activation, specificity, and robustness. We apply PLDSA to explain possible molecular links between type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) by describing Ca+2 -mediated interactions between the Src non-receptor tyrosine kinase and p52Shc adaptor protein. We suggest that these interactions may serve as a contributing factor to disease development and progression. In particular, we propose that signaling response is regulated, in part, by Ca+2 -mediated partitioning of lipid-bound and soluble forms of Src and p52shc. Thus, protein-protein interactions that drive signaling in response to extracellular ligand binding are also mediated by partitioning of signaling proteins between membrane-bound and soluble populations. We propose that PLDSA effects may explain, in part, the evolutionary basis of promiscuous protein interaction domains and their importance in cellular function.
Keywords: Alzheimer's disease; ShcA; Src; biological signaling; protein localization; protein-lipid interactions; type II diabetes mellitus.
© 2018 WILEY Periodicals, Inc.