Purpose: Early lead failure has recently been reported in ICD patients with Linox SD leads. We aimed to compare the long-term performance of the following lead model Linox Smart SD with other contemporary high-voltage leads.
Methods: All patients receiving high-voltage leads at our center between November 2009 and May 2017 were retrospectively analyzed. Lead failure was defined as the occurrence of one or more of the following: non-physiological high-rate episodes, low- or high-voltage impedance anomalies, undersensing, or non-capture.
Results: In total, 220 patients were included (Linox Smart SD, n = 113; contemporary lead, n = 107). During a median follow-up of 3.8 years (IQR 1.6-5.9 years), a total of 16 (14 in Linox Smart SD and 2 in contemporary group) lead failures occurred, mostly due to non-physiological high-rate sensing or impedance abnormalities. Lead failure incidence rates per 100 person-years were 2.9 (95% CI 1.7-4.9) and 0.6 (95% CI 0.1-2.3) for Linox Smart SD compared to contemporary leads respectively. Kaplan Meier estimates of 5-year lead failure rates were 14.0% (95% CI 8.1-23.6%) and 1.3% (95% CI 0.2-8.9%), respectively (log-rank p = 0.028). Implantation of a Linox Smart SD lead increased the risk of lead failure with a hazard ratio (HR) of 4.53 (95% CI 1.03-19.95, p = 0.046) and 4.44 (95% CI 1.00-19.77, p = 0.05) in uni- and multivariable Cox models.
Conclusions: The new Linox Smart SD lead model was associated with high failure rates and should be monitored closely to detect early signs of lead failure.
Keywords: Biotronik; Durata; Lead failure; Linox smart; Performance; Sprint Quattro.