Monoclonal antibodies are the largest class of therapeutic proteins due in part to their ability to bind an antigen with a high degree of affinity and specificity. A precise determination of their epitope is important for gaining insights into their therapeutic mechanism of action and to help differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of multiple antibodies in parallel over the course of just several weeks. This approach is based on a combination of rational library design, yeast surface display, and next generation DNA sequencing and provides quantitative insights into the epitope residues most critical for the antibody-antigen interaction. As an example, we will use this method to map the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus.
Keywords: Alpha toxin; Antibody; Antigen; Epitope mapping; FACS; Library design; Next generation sequencing; Staphylococcus aureus; Yeast display.