Abnormal expression of sialylated Thomsen-Friedenreich antigen (Neu5Acα2-3Galβ1-3GalNAcα-O-Ser/Thr, sialyl-T) has a strong relationship with various types of human cancers and many other diseases. However, the size and structural complexity, and relatively lower abundance of sialyl-T have posed a significant challenge to its detection. Therefore, details about the role of sialyl-T in a variety of physiological and pathological processes are still poorly understood. Here, a one-step chemoenzymatic labeling strategy to probe sialyl-T is described. This approach enables the sensitive, selective, and rapid detection of sialyl-T, and global profiling and identification of unknown sialyl-T-attached glycoproteins, which are potential therapeutic targets or biomarkers. The use of one-step labeling strategy not only has a higher sensitivity than a typical two-step reporter strategy but also avoids undergoing an additional chemical reaction step to introduce a reporter group after the labeling reaction, making it particularly useful for detecting low-abundance glycan epitopes on living cells.