This study aimed to explore the effect of MED27 on the expression of epithelial-mesenchymal transition (EMT)-related proteins and β-catenin in adrenal cortical carcinoma (ACC). The functional mechanism of MED27 on ACC processes was also explored. The expression of MED27 was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). siRNA was utilized to knockdown the expression of MED27. CCK8 assays were performed to evaluate SW-13 cell proliferation. Transwell assays were performed to assess the invasion ability, and wound healing assays were utilized to detect migration. A tumor xenograft mouse model was established to investigate the impact of silencing MED27 on tumor growth and metastasis. MED27 was highly expressed in ACC tissues and cells. Down-regulation of MED27 induced ACC cell apoptosis, and significantly attenuated ACC cell proliferation, invasion and metastasis in vivo and in vitro. MED27 knockdown regulated the expression of EMT-related proteins and Wnt/β-catenin signaling pathway-related proteins. Our study investigated the function and mechanism of MED27 and validated that MED27 plays a negative role in ACC occurrence and progression and could be utilized as a new therapeutic target in ACC prevention and treatment.
Keywords: MED27; Wnt/β-catenin; adrenal cortical carcinoma; epithelial-mesenchymal transition.