Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor

Nano Lett. 2018 Jun 13;18(6):3682-3687. doi: 10.1021/acs.nanolett.8b00816. Epub 2018 May 11.

Abstract

P-type two-dimensional steep-slope negative capacitance field-effect transistors are demonstrated for the first time with WSe2 as channel material and ferroelectric hafnium zirconium oxide in gate dielectric stack. F4-TCNQ is used as p-type dopant to suppress electron leakage current and to reduce Schottky barrier width for holes. WSe2 negative capacitance field-effect transistors with and without internal metal gate structures and the internal field-effect transistors are compared and studied. Significant SS reduction is observed in WSe2 negative capacitance field-effect transistors by inserting the ferroelectric hafnium zirconium oxide layer, suggesting the existence of internal amplification (∼10) due to the negative capacitance effect. Subthreshold slope less than 60 mV/dec (as low as 14.4 mV/dec) at room temperature is obtained for both forward and reverse gate voltage sweeps. Negative differential resistance is observed at room temperature on WSe2 negative capacitance field-effect-transistors as the result of negative capacitance induced negative drain-induced-barrier-lowering effect.

Keywords: Tungsten diselenide; ferroelectric oxide; internal metal gate; negative capacitance; steep slope.