SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program

Elife. 2018 May 9:7:e37419. doi: 10.7554/eLife.37419.

Abstract

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.

Keywords: RNA processing; SR protein; alternative splicing; chromosomes; developmental biology; gene expression; mRNA export; mouse; pluripotent; reprogramming; stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport
  • Cells, Cultured
  • Embryonic Stem Cells / physiology
  • Gene Expression Regulation*
  • Mice
  • Nanog Homeobox Protein / genetics*
  • Nucleocytoplasmic Transport Proteins / genetics
  • Pluripotent Stem Cells / physiology*
  • Protein Binding
  • RNA Splicing
  • RNA, Messenger / metabolism*
  • Serine-Arginine Splicing Factors / metabolism*

Substances

  • NXF1 protein, mouse
  • Nanog Homeobox Protein
  • Nanog protein, mouse
  • Nucleocytoplasmic Transport Proteins
  • RNA, Messenger
  • Srsf3 protein, mouse
  • Serine-Arginine Splicing Factors