Cancer therapies have resulted in increased survivorship in oncological patients. However, the benefits have been marred by the development of premature cardiovascular disease. The current definition outlines measurement of ejection fraction as a mean to diagnose cancer therapeutic-related cardiac dysfunction (CTRCD); however, up to 58% of the patients do not regain their cardiac function after the CTRCD diagnosis, despite therapeutic interventions. Therefore, there has been a growing interest in the markers for early myocardial changes (ie, changes with normal left ventricular ejection fraction [LVEF]) that may predict the development of subsequent left ventricular ejection fraction reduction or progression to heart failure. This review will highlight the use of diastolic parameters, tissue Doppler imaging (TDI), and speckle tracking echocardiogram (STE) as emerging technologies which can potentially detect cardiac dysfunction thereby stratifying patients for cardioprotective therapies. The goal of this manuscript was to highlight the concepts and discuss the current controversies surrounding these echocardiographic imaging modalities.
Keywords: cancer therapy-related cardiac dysfunction; global longitudinal strain; speckle tracking echocardiogram; strain imaging; tissue Doppler.
© 2018 Wiley Periodicals, Inc.