Morph-Specific Patterns of Reproductive Senescence: Connections to Discrete Reproductive Strategies

Am Nat. 2018 Jun;191(6):744-755. doi: 10.1086/697377. Epub 2018 Apr 3.

Abstract

How reproductive strategies contribute to patterns of senescence in natural populations remains contentious. We studied reproductive senescence in the dimorphic white-throated sparrow, an excellent species for exploring this issue. Within both sexes the morphs use distinct reproductive strategies, and disassortative pairing by morph results in pair types with distinct parental systems. White morph birds are more colorful and aggressive than tan counterparts, and white males compete for extrapair matings, whereas tan males are more parental. Tan males and white females share parental care equally, whereas white males provide little parental support to tan females. We found morph-specific patterns of reproductive senescence in both sexes. White males exhibited greater reproductive senescence than tan males. This result likely reflects the difficulty of sustaining a highly competitive reproductive strategy as aging progresses rather than high physiological costs of competitiveness, since white males were also long-lived. Moreover, morph was not consistently related to reproductive senescence across the sexes, arguing against especially high costs of the traits associated with white morph identity. Rather, tan females exhibited earlier reproductive senescence than white females and were short-lived, perhaps reflecting the challenges of unsupported motherhood. Results underscore the importance of social dynamics in determining patterns of reproductive senescence.

Keywords: genetic polymorphism; life history; parental care; reproductive strategies; senescence.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aging / physiology*
  • Animals
  • Clutch Size
  • Female
  • Longevity
  • Male
  • Paternity
  • Reproduction*
  • Sparrows / physiology*

Associated data

  • Dryad/10.5061/dryad.vj5pn