Characterization of iron oxide nanoparticle films at the air-water interface in Arctic tundra waters

Sci Total Environ. 2018 Aug 15:633:1460-1468. doi: 10.1016/j.scitotenv.2018.03.332. Epub 2018 Apr 4.

Abstract

Massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood. Here, Arctic biofilms collected during the summers of 2016 and 2017 from tundra surface waters on the Seward Peninsula of western Alaska were characterized with a suite of microscopic and spectroscopic methods. We hypothesized that these films contain redox-active minerals bound to biological polymers. The major components of the films were found to be iron oxide nanoparticle aggregates associated with extracellular polymeric substances. The observed mineral phases varied between films collected in different years with magnetite (Fe2+Fe23+O4) nanoparticles (<5nm) predominantly identified in the 2016 films, while for films collected in 2017 ferrihydrite-like amorphous iron oxyhydroxides were found. While the exact formation mechanism of these Artic iron oxide films remains to be explored, the presence of magnetite and other iron oxide/oxyhydroxide nanoparticles at the air-water interface may represent a previously unknown source of electron acceptors for continual anaerobic microbial respiration of organic carbon within poorly drained Arctic tundra.

Keywords: Coupled iron and carbon cycle; Extracellular polymeric substance; Ferrihydrite; Magnetite; Surface enhanced Raman scattering; Transmission electron microscopy.