DKK1 and Kremen Expression Predicts the Osteoblastic Response to Bone Metastasis

Transl Oncol. 2018 Aug;11(4):873-882. doi: 10.1016/j.tranon.2018.04.013. Epub 2018 May 15.

Abstract

Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis.