The free fatty acid receptor 1 (FFA1) is a potential target due to its function in enhancing of glucose-stimulated insulin secretion. The FFA1 agonist GW9508 has great potential for the treatment of type 2 diabetes mellitus, but it has been suffering from high plasma clearance probably because the phenylpropanoic acid is vulnerable to β-oxidation. To identify orally available analog without influence on the unique pharmacological mechanism of GW9508, we tried to interdict the metabolically labile group by incorporating two deuterium atoms at the α-position of phenylpropionic acid affording compound 4 (HWL-066). As expected, HWL-066 revealed a lower clearance (CL = 0.23 L-1 hr-1 kg-1 ), higher maximum concentration (Cmax = 5907.47 μg/L), and longer half-life (T1/2 = 3.50 hr), resulting in a 2.8-fold higher exposure than GW9508. Moreover, the glucose-lowering effect of HWL-066 was far better than that of GW9508 and comparable with TAK-875. Different from glibenclamide, no side-effect of hypoglycemia was observed in mice after oral administrating HWL-066 (80 mg/kg).
Keywords: deuterium; diabetes; free fatty acid receptor; pharmacokinetic profiles; phenylpropanoic acid.
© 2018 John Wiley & Sons A/S.