Aluminum (Al) phytotoxicity is a major limitation in the production of crops in the soils with pH ≤ 5. Boron (B) is indispensable nutrient for the development of higher plants and B role has been reported in the alleviation Al toxicity. Trifoliate orange rootstock was grown in two B and two Al concentrations. The results of the present study showed that Al toxicity adversely inhibited root elongation and exhibited higher oxidative stress in terms of H2O2 and O2- under B-deficiency. Additionally, the X-ray diffraction (XRD) analysis confirmed the increase of the cellulose crystallinity in the cell wall (CW). Al-induced remarkable variations in the CW components were prominent in terms of alkali-soluble pectin, 2-keto-3-deoxyoctonic acid (KDO) and the degree of methyl-esterification (DME) of pectin. Interesting, B supply reduced the pectin (alkali-soluble) under Al toxicity. Moreover, the results of FTIR (Fourier transform infrared spectroscopy) and 13C-NMR (13C nuclear magnetic resonance) spectra revealed the decrease of carboxyl groups and cellulose by B application during Al exposure. Furthermore, B supply tended to decrease the Al uptake, CW thickness and callose formation. The study concluded that B could mitigate Al phytotoxicity by shielding potential Al binding sites and by reducing Al induced alterations in the CW cellulose and pectin components.
Keywords: Aluminum toxicity; Boron; Cellulose; Pectin; Trifoliate orange rootstock.
Copyright © 2018 Elsevier Ltd. All rights reserved.