The lignin-carbohydrate complexes (LCCs) of the mesocarp (MS) and near the endocarp (NE) of Chinese quince (Chaenomeles sinensis) fruits were analyzed using three different methods of fractioning: milled wood lignin (MWL), LCC extracted from crude MWL with acetic acid (LCC-AcOH), and Bjorkman LCC. The MWL and LCC fractions were characterized by carbohydrate composition analysis, SEC, FT-IR, Py-GC/MS, thermal analysis and 2D HSQC NMR. Notably, large amounts of arabinose and galactose remained in the Björkman LCC fractions suggesting a chemical bond between the lignin and pectin. MWL and LCC-AcOH fractions showed better thermal stability than the Björkman LCC fractions. The structure of MS lignin was similar to that of NE lignin; however, fractions from the different fractionation methods revealed differences. The MWL fractions were rich in benzyl ether and γ-ester linkages, while the Björkman LCC fractions contained phenyl glycoside and γ-ester linkages, and the LCC-AcOH fractions contained phenyl glycoside and benzyl ether linkages. These findings are helpful in understanding the nature of lignin and LCC in Chinese quince fruits and provide a theoretical support for their potential application.
Keywords: Chinese quince; Lignin-carbohydrate complex; Structure.
Copyright © 2018 Elsevier B.V. All rights reserved.