Induction of clonal anergy in T-helper (Th) cells may have a role in regulating immune responses. A model system for studying Th cell tolerization at the clonal level in vitro could be useful for investigating the mechanisms involved. Accordingly, alloreactive helper cells were maintained in culture with interleukin 2 (IL 2) by intermittent stimulation with specific antigen. Regardless of the frequency of antigen stimulation, clones of age less than ca. 35 population doublings (PD) were found to undergo antigen-specific autocrine clonal expansion in the absence of exogenous IL 2. Such young clones (designated as phase I) could therefore not be "tolerized" by frequent exposure to antigen. In contrast, most clones of age greater than ca. 35 PD could be tolerized by frequent exposure to antigen (designated as phase II clones). Their autocrine proliferation was then blocked, although they still recognized antigen specifically as shown by their retained ability to secrete interferon-gamma (IFN-gamma) and granulocyte-macrophage colony stimulating factor (GM-CSF). The mechanism of response failure involved both an inability to upregulate IL 2 receptors in the absence of exogenous IL 2, as well as an inability to secrete IL 2. These defects were not overcome by stimulation with mitogens or calcium ionophore and phorbol esther in place of alloantigen. T-cell receptor, alpha, beta, and gamma-chain gene rearrangements remained identical in phase I and phase II clones. Tolerization of phase II clones could be avoided by increasing the period between antigen exposures. Despite this, whether or not phase II cells were capable of autocrine proliferation, they were found to have acquired the novel function of inducing suppressive activity in fresh lymphocytes. Suppressor-induction was blocked by the broadly reactive MHC class II-specific monoclonal antibody (moAb) TU39, but not by moAb preferentially reacting only with HLA-DR, DQ, or DP. Sequential immunoprecipitation on T-cell clones showed the presence of a putative non-DR, DQ, DP, TU39+ molecule on phase II clones. However, this molecule was also found on phase I clones. The nature of the TU39-blockable suppressor-inducing determinant present on phase II but not on (most) phase I clones thus remains to be clarified. In addition to suppressor-induction activity, phase II clones also acquired lytic potential as measured in a lectin approximation system. Cytotoxic (CTX) potential was also not influenced by the frequency of antigenic stimulation and could be viewed as a constitutive modulation of clonal function.(ABSTRACT TRUNCATED AT 400 WORDS)