One of the main drawbacks that limits the application of mineral trioxide aggregate (MTA) in dental field is its long setting time. Mineral trioxide aggregate with accelerated setting properties and excellent chemical-physical and biological properties is still required. In this study, an innovative mineral trioxide aggregate, which consists of calcium silicates, calcium aluminates, and zirconium oxide, was designed to obtain fast-setting property. The optimized formulation can achieve initial setting in 10 min and final setting in 15 min, which are much faster than commercial mineral trioxide aggregate. In addition, the optimized fast-setting MTA showed adequate radiopacity and good biocompatibility. The ion concentrations after storage in water for 1 day were 52.3 mg/L Ca, 67.7 mg/L Al, 48.8 mg/L Si, and 11.7 mg/L Mg. The hydration products of hardened cements were investigated by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared, showing the accelerated setting time was due to the formation of honeycomb-like calcium silicate hydrate gel. The novel MTA could be a promising material for dental applications.
Keywords: calcium aluminates; calcium silicates; dental cements; fast setting; mineral trioxide aggregate.