Human beliefs have remarkable robustness in the face of disconfirmation. This robustness is often explained as the product of heuristics or motivated reasoning. However, robustness can also arise from purely rational principles when the reasoner has recourse to ad hoc auxiliary hypotheses. Auxiliary hypotheses primarily function as the linking assumptions connecting different beliefs to one another and to observational data, but they can also function as a "protective belt" that explains away disconfirmation by absorbing some of the blame. The present article traces the role of auxiliary hypotheses from philosophy of science to Bayesian models of cognition and a host of behavioral phenomena, demonstrating their wide-ranging implications.
Keywords: Bayesian modeling; Computational learning theories; Philosophy of science.