Targeted gene capture sequencing in diagnosis of dystonia patients

J Neurol Sci. 2018 Jul 15:390:36-41. doi: 10.1016/j.jns.2018.04.005. Epub 2018 Apr 6.

Abstract

Background: Dystonia is a movement disorder with high clinical and genetic heterogeneity. Molecular diagnosis is important for an accurate diagnosis of dystonia. Targeted gene capture sequencing has been an effective method for screening multiple candidate genes simultaneously. This method, however, has been rarely reported to be used with dystonia patients.

Objectives and methods: To assess the effectiveness of the targeted gene capture sequencing in dystonia, we performed custom target gene capture followed by next-generation sequencing in dystonia patients from China. Sanger sequencing was utilized to substantiate the findings. The effects of identified variants were classified according to the American College of Medical Genetics and Genomics (ACMG) standards and guidelines.

Results: A total of 65 patients (34 female and 31 male) were recruited in this study. The mean age at onset was 22.7 ± 13.3 years ranging from 2 to 59 years. According to ACMG standards and guidelines, of 65 patients, 12 were identified with pathogenic variants (12/65, 18.5%) in gene TOR1A, PANK2 or ATP1A3, and another four were identified with likely-pathogenic variants (4/65, 6.2%) in gene PRRT2, GCH1 or THAP1. In total, 24.6% of patients in this cohort were detected to have a genetic cause of dystonia. Another four patients (4/65, 6.2%) were identified with variants which were considered to be VUS (Variants of Uncertain Significance) in gene SGCE, TH, ANO3 and ATP1A3 respectively. The most common detected gene was TOR1A, known to be causative for DYT1 (8/65, 12.3%).

Conclusions: The study demonstrates that targeted gene capture sequencing is an effective tool for identifying the genetic cause of heterogeneous dystonia patients.

Keywords: Dystonia; Next-generation sequencing; Targeted gene capture.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Dystonic Disorders / diagnosis*
  • Dystonic Disorders / genetics*
  • Female
  • Genetic Variation
  • Humans
  • Male
  • Middle Aged
  • Sequence Analysis / methods*
  • Young Adult