Introduction: Calcium/Calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase that phosphorylates and regulates activity of many substrates in various tissues. Traditional CaMKII activity assays rely on incorporation of radioactivity onto a CaMKII substrate by utilizing γ-32P ATP, which has a short half-life and can pose health risks to the researchers.
Methods: An 8-minute HPLC-MS method was developed to measure a CaMKII-specific peptide substrate autocamtide-2 (AC-2) and its phosphorylated form, phosphoautocamtide-2 (PAC-2). Degradation of AC-2 and PAC-2 in solutions and how to stabilize them were studied. The method was validated according to FDA guidelines for bioassays, and applied to determine CaMKII activity in a C2C12 cell lysate and IC50 of KN-93, a known CaMKII inhibitor.
Results: Simple acidification with formic acid prevented AC-2 and PAC-2 from undergoing rapid degradation in the CaMKII assay mixture and in diluted water solutions. LLOQ of the HPLC-MS method was 0.26 μM and 0.12 μM for quantification of AC-2 and PAC-2, respectively. Precision was within 15% and accuracy was within 100 ± 15%. Using the developed method, IC50 of KN-93 was measured to be 399 ± 66 nM, which was compatible to reported values.
Conclusions: A validated HPLC-MS method provides precise and accurate determination of AC-2 and PAC-2. This method enabled enzyme activity assay and inhibitor IC50 determination for CaMKII without radioactive labelled reagents.
Keywords: Autocamtide-2; CaMKII; HPLC-MS method; IC50; Non-radioactive; Phosphoautocamtide-2.
Copyright © 2018 Elsevier Inc. All rights reserved.