Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP)

Antiviral Res. 2018 Aug:156:55-63. doi: 10.1016/j.antiviral.2018.05.010. Epub 2018 May 26.

Abstract

Itraconazole (ITZ) is a well-known, FDA-approved antifungal drug that is also in clinical trials for its anticancer activity. ITZ exerts its anticancer activity through several disparate targets and pathways. ITZ inhibits angiogenesis by hampering the functioning of the vascular endothelial growth receptor 2 (VEGFR2) and by indirectly inhibiting mTOR signaling. Furthermore, ITZ directly inhibits the growth of several types of tumor cells by antagonizing Hedgehog signaling. Recently, we reported that ITZ also has broad-spectrum antiviral activity against enteroviruses, cardioviruses and hepatitis C virus, independent of established ITZ-activities but instead via a novel target, oxysterol-binding protein (OSBP), a cellular lipid shuttling protein. In this study, we analyzed which structural features of ITZ are important for the OSBP-mediated antiviral activity. The backbone structure, consisting of five rings, and the sec-butyl chain are important for antiviral activity, whereas the triazole moiety, which is critical for antifungal activity, is not. The features required for OSBP-mediated antiviral activity of ITZ overlap mostly with published features required for inhibition of VEGFR2 trafficking, but not Hh signaling. Furthermore, we use in silico studies to explore how ITZ could bind to OSBP. Our data show that several pharmacological activities of ITZ can be uncoupled, which is a critical step in the development of ITZ-based antiviral compounds with greater specificity and reduced off-target effects.

Keywords: Cardiovirus; Encephalomyocarditis virus; Enterovirus; Itraconazole; Molecular modeling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology*
  • HeLa Cells
  • Humans
  • Itraconazole / chemistry
  • Itraconazole / pharmacology*
  • Molecular Dynamics Simulation
  • Picornaviridae / drug effects*
  • Picornaviridae / physiology
  • Protein Binding
  • Receptors, Steroid / metabolism*
  • Structure-Activity Relationship*
  • Virus Replication / drug effects*

Substances

  • Antiviral Agents
  • Receptors, Steroid
  • oxysterol binding protein
  • Itraconazole