Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.)

Plant Cell Environ. 2018 Aug;41(8):1935-1947. doi: 10.1111/pce.13353. Epub 2018 Jun 19.

Abstract

Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B. napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.

Keywords: RNA-seq; association analysis; differentially expressed genes; genetic mapping; pleiotropic effects; vernalization; yield.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassica napus / genetics*
  • Brassica napus / growth & development
  • Brassica napus / physiology
  • Chromosome Mapping
  • Flowers / genetics
  • Flowers / growth & development*
  • Flowers / physiology
  • Gene Expression Profiling
  • Gene Expression Regulation, Plant / genetics
  • Genes, Plant / genetics*
  • Genes, Plant / physiology
  • Seasons
  • Sequence Analysis, RNA
  • Transcriptome