We examined the fate of two major products of latency as Epstein-Barr virus was induced to replicate. We studied a superinducible clone of HR-1 cells in the presence and absence of induction by phorbol ester, and we analyzed the X50-7 line with and without superinfection by an HR-1 viral variant which disrupts latency. The two methods of induction yielded qualitatively similar results. After induction, there was abundant synthesis of viral transcripts, amplification of viral DNA, and the appearance of many new viral polypeptides. Nonetheless, there were no changes in the cytoplasmic abundance of Epstein-Barr virus-encoded RNAs and no alteration in the level of Epstein-Barr virus nuclear antigen mRNA or polypeptide. Thus, under conditions in which numerous other Epstein-Barr virus gene products are activated, the two major latent gene products are expressed at a constitutive level. Expression of Epstein-Barr virus-encoded RNAs and nuclear antigen must therefore be regulated in a manner completely different from expression of replicative functions.