Self-emulsifying drug delivery system improves preventive effect of curcuminoids on chronic heart failure in rats

Saudi Pharm J. 2018 May;26(4):528-534. doi: 10.1016/j.jsps.2018.02.003. Epub 2018 Feb 5.

Abstract

Several studies have reported the preventive or therapeutic effect of curcuminoids on chronic heart failure (CHF), but their application was limited due to low solubility and bioavailability. Our previous study indicates that self-emulsifying drug delivery system (SEDDS) improves the solubility and bioavailability of curcuminoids. Thus, the aim of this work was to investigate whether SEDDS could improve preventive effect of curcuminoids on CHF in rats. CHF model was were established by coronary artery ligation. Ninety rats were randomly and averagely divided into sham, model, low- or high-dose suspension or SEDDS of curcuminoids (66.68 or 266.68 mg/kg) groups. Hemodynamic indices were recorded by multipurpose polygraph. Serum oxidative indices, B-type natriuretic peptide (BNP) and heart weight index were determined by kits and electronic balance. Myocardial infarct area, ventricular dilatation degree and collagen volume fraction of myocardial interstitium were analyzed by Masson staining, picric acid and sirius red staining, light microscopy and image analysis system. Myocardial histopathology was observed by hematoxylin and eosin staining, Masson staining and light microscopy. Reduction of ventricular pump function, increase of BNP level and heart weight index, myocardial lipid peroxidation damage, myocardial infarction, myocardial fibrosis, and cardiac enlargement were detected or observed in model group relative to those in sham group. After treatment with suspension or SEDDS of curcuminoids, the above-mentioned pathological changes were obviously reversed relative to those in model group. Meanwhile, the ameliorative effect of SEDDS of curcuminoids was markedly better than that of suspension of curcuminoids. This work provides a valuable reference from pharmacodynamics for development of curcuminoids pharmaceutics.

Keywords: Chronic heart failure; Curcuminoids; Lipid peroxidation damage; Self-emulsifying drug delivery system; Ventricular pump function.