Purpose: Evaluation of trauma patients with chest tube malposition using initial emergency computed tomography (CT) and assessment of outcomes and the need for chest tube replacement.
Methods: Patients with an injury severity score > 15, admitted directly from the scene, and requiring chest tube insertion prior to initial emergency CT were retrospectively reviewed. Injury severity, outcomes, and the positions of chest tubes were analyzed with respect to the need for replacement after CT.
Results: One hundred seven chest tubes of 78 patients met the inclusion criteria. Chest tubes were in the pleural space in 58% of cases. Malposition included intrafissural positions (27%), intraparenchymal positions (11%) and extrapleural positions (4%). Injury severity and outcomes were comparable in patients with and without malposition. Replacement due to malfunction was required at similar rates when comparing intrapleural positions with both intrafissural or intraparenchymal positions (11 vs. 23%, p = 0.072). Chest tubes not reaching the target position (e.g., pneumothorax) required replacement more often than targeted tubes (75 vs. 45%, p = 0.027). Out-of-hospital insertions required higher replacement rates than resuscitation room insertions (29 vs. 10%, p = 0.016). Body mass index, chest wall thickness, injury severity, insertion side and intercostal space did not predict the need for replacement.
Conclusions: Patients with malposition of emergency chest tubes according to CT were not associated with worse outcomes compared to patients with correctly positioned tubes. Early emergency chest CT in the initial evaluation of severely injured patients allows precise detection of possible malposition of chest tubes that may require immediate intervention.
Keywords: Chest tube; Computed tomography; Multiple trauma; Tracheal intubation.