Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize

J Exp Bot. 2018 Jul 18;69(16):3963-3973. doi: 10.1093/jxb/ery208.

Abstract

The brown midrib2 (bm2) mutant of maize, which has a modified lignin composition, contains a mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. Here, we show that a MITE transposon insertion caused down-regulation of MTHFR, with an accompanying decrease in 5-methyl-tetrahydrofolate and an increase in 5, 10-methylene-tetrahydrofolate and tetrahydrofolate in the bm2 mutant. Furthermore, MTHFR mutation did not change the content of S-adenosyl methionine (SAM), the methyl group donor involved in the biosynthesis of guaiacyl and syringyl lignins, but increased the level of S-adenosyl homocysteine (SAH), the demethylation product of SAM. Moreover, competitive inhibition of the maize caffeoyl CoA O-methyltransferase (CCoAOMT) and caffeic acid O-methyltransferase (COMT) enzyme activities by SAH was found, suggesting that the SAH/SAM ratio, rather than the concentration of SAM, regulates the transmethylation reactions of lignin intermediates. Phenolic profiling revealed that caffeoyl alcohol glucose derivatives accumulated in the bm2 mutant, indicating impaired 3-O-methylation of monolignols. A remarkable increase in the unusual catechyl lignin in the mutant demonstrates that MTHFR down-regulation mainly affects guaiacyl lignin biosynthesis, consistent with the observation that CCoAOMT is more sensitive to SAH inhibition than COMT. This study uncovered a novel regulatory mechanism in lignin biosynthesis, which may offer an effective approach to utilizing lignocellulosic feedstocks in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Down-Regulation
  • Lignin / metabolism*
  • Methylation
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics
  • Methylenetetrahydrofolate Reductase (NADPH2) / metabolism*
  • Mutation
  • Zea mays / enzymology
  • Zea mays / genetics
  • Zea mays / metabolism*

Substances

  • Lignin
  • Methylenetetrahydrofolate Reductase (NADPH2)