The core component BamA of the β barrel assembly machinery (BAM) adopts several conformations, which are thought to facilitate the insertion and folding of β barrel proteins into the bacterial outer membrane. Which factors alter the stability of these conformations remains to be quantified. Here, we apply single-molecule force spectroscopy to characterize the mechanical properties of BamA from Escherichia coli. In contrast to the N-terminal periplasmic polypeptide-transport-associated (POTRA) domains, the C-terminal transmembrane β barrel domain of BamA is mechanically much more stable. Exposed to mechanical stress this β barrel stepwise unfolds β hairpins until unfolding has been completed. Thereby, the mechanical stabilities of β barrel and β hairpins are modulated by the POTRA domains, the membrane composition and the extracellular lid closing the β barrel. We anticipate that these differences in stability, which are caused by factors contributing to BAM function, promote conformations of the BamA β barrel required to insert and fold outer membrane proteins.
Keywords: BamA; POTRA domains; atomic force microscopy; outer membrane protein; outer membrane vesicles; single-molecule force spectroscopy; transmembrane β barrel protein; unfolding pathways; β hairpins; β strands.
Copyright © 2018 Elsevier Ltd. All rights reserved.