Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins

Adv Mater. 2018 Aug;30(31):e1800527. doi: 10.1002/adma.201800527. Epub 2018 Jun 5.

Abstract

Solar-driven Fischer-Tropsch synthesis represents an alternative and potentially low-cost route for the direct production of light olefins from syngas (CO and H2 ). Herein, a series of novel Co-based photothermal catalysts with different chemical compositions are successfully fabricated by H2 reduction of ZnCoAl-layered double-hydroxide nanosheets at 300-700 °C. Under UV-vis irradiation, the photothermal catalyst prepared at 450 °C demonstrates remarkable CO hydrogenation performance, affording an olefin (C2-4= ) selectivity of 36.0% and an olefin/paraffin ratio of 6.1 at a CO conversion of 15.4%. Characterization studies using X-ray absorption fine structure and high-resolution transmission electron microscopy reveal that the active catalyst comprises Co and Co3 O4 nanoparticles on a ZnO-Al2 O3 mixed metal oxide support. Density functional theory calculations further demonstrate that the oxide-decorated metallic Co nanoparticle heterostructure weakens the further hydrogenation ability of the corresponding Co, leading to the high selectivity to light olefins. This study demonstrates a novel solar-driven catalyst platform for the production of light olefins via CO hydrogenation.

Keywords: Co-based catalysts; layered double hydroxides; light olefins; photothermal CO hydrogenation.