Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

Phys Rev Lett. 2018 May 25;120(21):215703. doi: 10.1103/PhysRevLett.120.215703.

Abstract

We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ∼7 g/cm^{3}, but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ∼1.3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ∼0.25-0.65 TPa, where SiO_{2} is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ∼0.65-1.0 TPa, consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.