Genome of Wild Mandarin and Domestication History of Mandarin

Mol Plant. 2018 Aug 6;11(8):1024-1037. doi: 10.1016/j.molp.2018.06.001. Epub 2018 Jun 6.

Abstract

Mandarin (Citrus reticulata) is one of the most important citrus crops worldwide. Its domestication is believed to have occurred in South China, which has been one of the centers of mandarin cultivation for four millennia. We collected natural wild populations of mandarin around the Nanling region and cultivated landraces in the vicinity. We found that the citric acid level was dramatically reduced in cultivated mandarins. To understand genetic basis of mandarin domestication, we de novo assembled a draft genome of wild mandarin and analyzed a set of 104 citrus genomes. We found that the Mangshan mandarin is a primitive type and that two independent domestication events have occurred, resulting in two groups of cultivated mandarins (MD1 and MD2) in the North and South Nanling Mountains, respectively. Two bottlenecks and two expansions of effective population size were identified for the MD1 group of cultivated mandarins. However, in the MD2 group there was a long and continuous decrease in the population size. MD1 and MD2 mandarins showed different patterns of interspecific introgression from cultivated pummelo species. We identified a region of high divergence in an aconitate hydratase (ACO) gene involved in the regulation of citrate content, which was possibly under selection during the domestication of mandarin. This study provides concrete genetic evidence for the geographical origin of extant wild mandarin populations and sheds light on the domestication and evolutionary history of mandarin.

Keywords: Citric acid; Citrus; Domestication; Genome; Wild mandarin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Citric Acid / metabolism
  • Citrus / classification
  • Citrus / genetics*
  • Citrus / metabolism
  • Domestication
  • Genetic Variation / genetics
  • Genetic Variation / physiology
  • Genome, Plant / genetics
  • Genotype
  • Phylogeny

Substances

  • Citric Acid