Based on the knowledge that poly(sialic acid) is a critical element for tumour development and that the receptors for its monomer are expressed on neutrophils, which play important roles in the progression and invasion of tumours, a poly(sialic acid)-p-octadecylamine conjugate (PSA-p-ODA) was synthesised and used to modify the surface of liposomal pixantrone (Pix-PSL) to improve the delivery of Pix to peripheral blood neutrophils (PBNs). The liposomes were fabricated using a remote loading technology via a pH gradient, and were then assessed for particle size, encapsulation efficiency, in vitro release, in vitro cytotoxicity, and pharmacokinetics. Simultaneously, in vitro and in vivo cellular uptake studies demonstrated that Pix-PSL provided an enhanced accumulation of Pix in PBNs. An in vivo study showed that the anti-tumour activity of Pix-PSL was superior to that of other formulations, probably owing to the efficient targeting of PBNs by Pix-PSL, after which PBNs containing Pix-PSL (Pix-PSL/PBNs) in the circulatory system are recruited by the tumour microenvironment. These findings suggest that PSA-p-ODA-decorated liposomal Pix may provide a neutrophil-mediated drug delivery system (DDS) for the eradication of tumours, and thus represents a promising approach for the tumour targeting of chemotherapeutic treatments.
Keywords: Drug delivery system; Liposomes; Peripheral blood neutrophils; Poly(sialic acid); Tumour-targeting.
Copyright © 2018 Elsevier B.V. All rights reserved.