Background: Semantic verbal fluency (SVF) tests are routinely used in screening for mild cognitive impairment (MCI). In this task, participants name as many items as possible of a semantic category under a time constraint. Clinicians measure task performance manually by summing the number of correct words and errors. More fine-grained variables add valuable information to clinical assessment, but are time-consuming. Therefore, the aim of this study is to investigate whether automatic analysis of the SVF could provide these as accurate as manual and thus, support qualitative screening of neurocognitive impairment.
Methods: SVF data were collected from 95 older people with MCI (n = 47), Alzheimer's or related dementias (ADRD; n = 24), and healthy controls (HC; n = 24). All data were annotated manually and automatically with clusters and switches. The obtained metrics were validated using a classifier to distinguish HC, MCI, and ADRD.
Results: Automatically extracted clusters and switches were highly correlated (r = 0.9) with manually established values, and performed as well on the classification task separating HC from persons with ADRD (area under curve [AUC] = 0.939) and MCI (AUC = 0.758).
Conclusion: The results show that it is possible to automate fine-grained analyses of SVF data for the assessment of cognitive decline.
Keywords: Alzheimer’s disease; Assessment; Dementia; Machine learning; Mild cognitive impairment; Neuropsychology; Semantic verbal fluency; Speech processing; Speech recognition.
© 2018 S. Karger AG, Basel.